Climate Change and the Kootenay Boundary Flood, Fire & Famine: Forum on Building Resilience to Global Climate Change in the Boundary **September 26, 2013** Kettle River Watershed Planning Regional District of Kootenay Boundary Christina Lake, BC g13utzig@telus.net www.kootenayresilience.org **Greg Utzig Kutenai Nature Investigations Ltd. Nelson, BC CANADA** ## Climate Change Projects - Vulnerability/ Resilience Assessment of West Kootenay Forest Ecosystems - Funded by BC Government MoFLNRO Future Forest Ecosystem Scientific Council - Climate Change Conservation Planning - Funded by ENGOs Wildsight and Conservation Northwest #### Climate Information - Pacific Climate Impacts Consortium (PCIC) – U of Victoria - Climate Western North America (ClimateWNA) – BC MoFLNRO, UBC, U of A – Edmonton - Climate Impacts Group (CIG) U of WA - International Panel on Climate Change (IPCC) ## Weather and Climate ## Weather Day-to-day variation in temperature, precipitation, humidity, wind and atmospheric pressure – the state of the atmosphere at a particular time ## Climate Averages or extremes of temperature, precipitation and other atmospheric variables over longer periods of time (months, years, decades, centuries) ## Weather and Climate Variability # Trend of Mean Annual Temperature Columbia Basin (30 year "normals") ## **European Summer Temperatures** (1500-2010 anomalies relative to 1970-1999 mean) # Decadal Summer Temperature Anomalies Northern Hemisphere Land (1951- 61 reference period) ## Climatic Extremes - Heat waves - Drought - High intensity rainstorms/ flooding - Windstorms/ tonadoes - Lightening storms - Hail storms - Ice storms - Early spring heat/ late frost combinations Grand Forks, BC - July, 2012 Crossfields, AB - July, 2012 #### Mechanisms? #### **Jet Stream Modifications** - Increased amplitude - Reduced rate of movement - Weather systems stall Calgary & SE BC - June, 2013 # Climatic Extremes – 2013 Example #### **High Precipitation Event** # Climatic Extremes – 2012 Example Monthly Precipitation/ Rapid Snowmelt - Johnson's Landing #### **Increased Soil Moisture** **Decreased Soil Strength** **Landslide (July 12, 2012)** ## **Impacts** - 4 people killed - 4 houses destroyed - 6 properties damaged/ loss of access - Community water system destroyed - Main road destroyed - Damage to utilities - Ongoing future risks ## We Are the Cause # General Circulation Models (GCMs) "Global Climate Models" Mathematical representations of the global climate system "3D pixels" representing atmospheric conditions at various elevations around the earth through time From: IPCC 2007 - AR4 WG1 # Modeling - Future Projections Greenhouse Gas Emissions – various potential scenarios # Modeling - Future Projections Greenhouse Gas Emissions – various potential scenarios ## **GCM / Scenario Combinations** 2050s Mean Projections for British Columbia Annual Temperature and Precipitation Blue diamonds recommended scenarios Green/ Purple - scenarios investigated for the Kootenays # Variability: Past vs. Potential Future ### for the Columbia Basin Note that the projected annual temperature shifts far exceed historical variability (20th century), while the projected precipitation shifts do not. 750 Total Precipitation (mm/yr) 500 From: Murdock 2006 - PCIC-CBT 1000 # Biogeoclimatic (BEC) Zones # Biogeoclimatic Zones ## **Ecosystem Units as "Bioclimate Envelopes"** ## A Range of Projected Bioclimate Envelopes ## **Bioclimate Envelopes and Ecosystems** # Habitat projections for Ponderosa Pine Current 2020s # Habitat projections for Ponderosa Pine Current 2050s # Habitat projections for Ponderosa Pine Current 2080s # Habitat projections for Engelmann Spruce ## Habitat projections for Engelmann Spruce ## Habitat projections for Engelmann Spruce # 12000 12000 10000 10000 Rorth 100000 10000 10000 10000 10000 10000 10000 10000 10000 100000 10000 10000 10000 10000 10000 10000 10000 10000 100000 10000 BC Fire History 1919 - 2008 # West Kootenay Fire History ## **Area Burned** # Changes in Area Burned Jordan 2007 ## Insects/ Pathogens / Decline Syndromes - Tree decline drought/ resistance - Bark Beetles - Mountain pine beetle, spruce bark beetle, lps beetles, Douglas-fir beetle - Defoliators, blights, pathogens - Spruce budworm, dothistroma, larch needle cast, root disease - Complex Interactions - Birch die-back, yellow cedar, 5-needle pines From: Raffa et al. 2008 (B) Elevation(C) Stem diameter (E) Fire return interval (D) Genus ## **Ecosystem Response** # **Hydrologic Changes** ### Direct Effects - Reduced snow storage - Increased winter flows - Reduced spring peak flows - Reduced summer/fall low flows #### Indirect Effects - Loss of forest cover increased erosion and snowmelt rates - Increased irrigation demands, decreased water availability 10 GCMs A1B scenario VIC hydrology model From: CIG Univ. WA ## What to do? ## Adaptation - Increase research and modeling to anticipate changes - Increase monitoring to provide early warning of surprises - Increase conservation to aid natural adaptation - Plan for change rethink everything we are doing now ## Mitigation - STOP burning fossil fuels (coal, oil, natural gas) - Eliminate other GHG emissions (cement, landfills) - Conserve energy ## Look for adaptation-mitigation combinations - Use wood from interface fire treatments to displace fossil fuels for heat - Protect forests to sequester carbon and assist ecosystem adaptation - Increase building insulation to reduce fuel use and adapt to summer heat waves # Challenges – Opportunities Forestry/ Ecosystems ## Challenges - Increasing fire frequency and intensity - Changing habitats and consequent species loss - Reforestation/ restoration species suitability ## Opportunities - Harvesting/ silviculture treatments to increase resilience and decrease interface fire risk - Using wood waste to replace fossil fuels - Increased grassland habitats and rangelands ## Example "Fuels for Schools" program **Chipping Slash** Hazard Reduction **School Boiler** # Thank You "We have options, but past is not one of them" Sauchyn and Kulshreshtha 2008, p.295 "Times have changed – no longer is our goal sustainable development our goal must now be sustainable survival" Blackstock 2008, p.15